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INTRODUCTION 

It is noted in [i] that the elementary theory of bending, based on the Kirchhoff--Love 
hypothesis, is not applicable for the solution of a number of contact problems. A variant 
of the theory of bending can be constructed which is more general in comparison with the el- 
ementary theory and which allows of a correct formulation of the plane contact problem of the 
theory of elasticity. The problem discussed in the present article allows of "arbitrary" 
rotations, but, in the case where the curvature of one of the surfaces is given, remains 
linear. 

w Let 

r ---~ Zel, ' r ,  ----- r -~- W ~  

where r and r, are the radius-vectors of points of the lower surface of the layer before and 
after deformation, respectively; W ffi u,(x)ex + v,(x)e2 is the vector of the displacements; 
el and e2 are unit vectors along the coordinate axis. We define e~(x) (the deformation of 
the lower surface) in the following manner: 

t t 2~ 1 2t 
= T(d u., + - r  u.:, + - r  

(here and in what follows the subscript after the comma denotes differentiation with respect 
to the corresponding coordinate). 

Let e(x) be the angle between a tangent to the deformed lower surface and e, (see Fig. 
i) ; then 

tg 0 = v , ,  :/(t + u . ,  i). 

By e** and e2, we denote the unit vectors of a tangent and a normal to the deformed lower 
surface. Then e** = cos O-e, + sin e.e2 and e=, = --sin O.e~ + cos O-e2. We note that e**,, = 
O, ,e2 , e2,,, = --8, ,e**. With deformation of the layer, let the point M, determined with 
respect to the deformation by the radius-vector p = me, + yea, go over to the point M' (see 
Fig. i), determined by the radius-vector 

p ,  = r + W + (tj + v)e.,, + uel.,~ ( 1 . ! )  

where  u = u ( x ,  y ) ;  v = v ( x ,  y ) ;  u ( x ,  O) = O; and v ( x ,  O) = O. 

Since the Kirchhoff--Love hypothesis is satisfied in the case u(x, y) -- 0 and v(x, y) 
0, we shall call u and v supplementary displacements inside the layer. 

We assume the problem to admit of "arbitrary" rotations, but with elongations and the 
shears that are small in comparison with unity, and that the thickness of the layer is much 
less than the radius of curvature, i.e., 

h0,: i ~ s, wheml + 8 ~ I, 

81 --~ 8, where i-~8~i, 

Ou au Ov Ov 
az '  Oy' Ox' ~ s ,  where t - ~ 8 ~ . ~ 1 .  

By r s y and aY2 we denote the deformations of the neighborhood of a particle. Then 

(1.2) 
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T(P-,,-P,,)," (1.3) 

Using (1.1)-(1.3), we obtain 

~ ~ 4~= ~ (~ o~ ) (1.4) e~ = ~ - -  ye,~ + ~ =  - -  ~ .~ ,  ~=~, W\~+N+ue.~ . 

w Let (Yl, Y~) be a Cartesian system of coordinates and (x,, x~) an orthogonal curvi- 
linear system of coordinates. The equations of equilibrium in the absence of mass forces as- 
sume the form 

~ 1 7 6  ( a , g , o  = t ,2),  ox a 

where r B = 1/2 gB~[ (~g~y /3xa )  + (Bg~a/3x Y) - (@gya/Bx~)] a r e  C h r i s t o f f e l  symbols  of  t he  s e c -  ya  
ond kind; gab = ~'~P are the components of ametric tensor; and 3 a = (~YB/Bxa)e B (B= i, 2). Let 

us examine the curvilinear coordinates (x, y), connected with the curved lower surface of 
the layer (Fig. 2). As the coordinate x of the point M we take the Cartesian coordinate of 
the same point, which, with deformation, goes over into the base of a perpendicular dropped 
from M to the curve LN. The coordinate y is the distance from the point M to the curve LN. 
Then g11 = (#i ~ 2Ez --yS, i) 2 g2z = i, and G12 = O. Going over to the physical components 

of the tensor of the stresses pU~ = p U B ~  Iz = p22 = p12 , .~ ~ and denoting al = P, , os , , T:s , , 
using (1.2) we obtain 

Oo~IO= -I- o~,]8y - -  20, ~,, = 0., ~'I12/(~X -~- a~Jay - -  o,  ~((~ - -  (~) = o. ( 2 . 1 )  

Equations analogous to (1.4) and (2.1) were obtained in [2] for a description of the 
boundary layer. 

w Let an elastic body occupy the volume of the curvilinear rectangle a = {x, YlY ~ 
[0, h], x ~ [--~, ~]} (Fig. 3) and be in a state of plane deformation. Let the curvature of 
the lower surface be given, i.e.. let the function ~, 1(x) be known. The problem consists 
in seeking functions ~i,~, TI~, ~,~, y gY~, el, u, and v satisfying Eqs. (1.4) and (2.1) and 
Hooke' s law 

~ = ~ + ~ ,  ~ = ~ + ~ 4 ,  ~ ,  = 2 ~ , .  ( 3 . 1 )  

for a = k + 2~, B = X, ~ > O, and ~ > 0 inside the region ~ and the following relationships 
at the bounary of the region: 

ul~=. = vl~=~ = 0, ~l~=0 = ~-, (3.2) 

c~l~=• = ~*+, "~--I~=~, = ~*+" ( 3 . 3 )  

A specific characteristic of the problem is that although the use of Eqs. (1.4) and (2.1) 
admits of arbitrary rotations, since the function e,~(x) is given, the problem becomes line- 
ar. In view of the fact that the system of coordinates connected with the lower surface is 
deformed in an unknown manner (the equations contain the unknown function el, i.e., the de- 
formation of the lower surface -- in the general case, a nonlinear function of the displace- 
ments of this surface), in distinction from the usual problem of the theory of elasticity, 

I -- at the surface y = 0 an additional condition must be imposed: u y=o 0. 

w We assume that a solution of the problem exists. Multiplying (2.1) by u and v, 
respectively, and collecting and integrating with respect to ~, we obtain 

h l 

b -I  

--- a - i - z p N N  , I * \ o y - : - ~ j  - v ( ~ - -  , 
l l  

(4.1) 
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Integrating the first of Eqs. (2.1) 
dition (3.3), we obtain 

From (4.1) and (4.2) we obtain 

Fig. 3 

with respect to y from 0 

h 

-~j~.~ ~.~. 
0 

to h and using the boundary con- 

(4.2) 

h l 

.t' (,,,,, + ,,,,,) I'-, du + j (~,.,, +,,,,,)1o',~ = 
0 --Z 

= ~,,," o.o~ ( ~  o,,'~' ; S[ (,) +o(;)' + =~,~],. § , o+  S(~--~)o, , •  
g Q I~ 

[ ))] ( ) i ic(o~ ' au Ov i a~ x c,E=+~ N ea -_ ,  -~\~ o~+[~N ,ty dx. 

(4.3) 

We note that 

(4.4) 

Thus, we have satisfied the energy identity, from which~he singularity of the solution 
of the problem can be shown. In actuality, let there exist two solutions of the problem. 
We denote the difference of these solutions by the corresponding letter. Taking into con- 
sideration that the solutions coincide at the boundary of the region, from (4.3) we obtain 

Ou Ov d = 

f l  - - !  

(4.s) 
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In view of (4.4), the second term in (4.5) is nonnegative; consequently, 

az/ + ~ \Oy/ + 2[~ ~ ~ dy -- 

�9 a = kay] 

0u/0~1 -5 OvlOx ~ O. 

Since (a ~- Ba)/~ �9 0, 

Ov/Oy =" O. 

Substituting (4.8) into (4.6), we obtain (y = hz) 

(4.6) 

(4.7) 

(4.8) 

Ou 2 ~ Ou 
dy - -  --f- ~ dy dx = O. (4.9) 

We represent ~u/~x in the form of a Fourier series in terms of a Legendre polynomial, orthog- 
onal to [0, i]: 

au 
a-"; = el (x) Pi  (z). 

i=0  

From (4 .9 )  we o b t a i n  i~" ~ t  e~. ~ 0  ; c o n s e q u e n t l y ,  e i ~ 0 , ~ i  = 1, . . .  Thus,  ~u/~x = co = 

c o n s t ,  b u t ,  f rom ( 3 . 2 ) ,  ~u /~x ly=o ;  c o n s e q u e n t l y ,  ~u/~x ~ 0. Toge the r  w i t h  (4 .7 )  and ( 4 . 8 ) ,  
. t h i s  shows t h e  s i n g u l a r i t y  o f  t h e  s o l u t i o n  of  t he  problem~ 

w I t  i s  p roposed  to s o l v e  t he  problem by a method d e s c r i b e d  in  [3] ,  u s i n g  an expan -  
s i o n  of unknown functions in series in terms of Legendre polynomials. The first approxima- 
tion is as follows: 

u = UoPo + uxPx + u~P= + u~Ps,. 

v = voPo + PiP, + v~P~, 

~1 = doPo -}- dlPx, ~ = qo Po q- t iP1,  xn  = soPo fi- siP1 q- szP2, 

where Pi(z) are Legendre polynomials, orthogonal in 

] d i 
P~ (z) = "W ~ [zt (z --  l)i], 

The following equations are satisfied: 

[0, i]: 

z = y / h .  

Oq~ll . " ~  -~-/P~dz = 0 (k ----- 0; t), 
0 0 

t t 

0 0 
i 

(%, --  2p8~2) Pl, dz ---- 0 (k = O, l, 2), 
0 

The deformations E y, ~Y, and E y are taken in the form 
12 

a 

I a 

i 2e~2 ---- a (vopo) + "~- a (uoP ~ q_ u~P~ q- u,P,  q- u,P,). 
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The boundary conditions at the surfaces y = 0 and y = h give the following equations: 

U 0 -- U I "31- U s -- U 3 = O, U 0 -- U I -37 U2 : 0,. 80 -- 81 -{- 82 = ~'--I 

v a + v , + v s - - - - v +  or qo- l -qx- - - -r  

s o + s l + s ~ = ~ i ~ +  or u o + u l + u ~ + u  8 = u + .  

Thus, the problem (1.4), (2.1), (3.1), (3.3) is reduced to a boundary-value problem for ord- 
inary differential equations with the following boundary conditions: 

4 l x = + l  = do+, dalx=+z = dx+, solx=+t - -  so• 

w By way of example, let us consider the problem of the compression of an elastic 
layer by rigid round cylindrical dies. Let a layer of length 21 and thickness h be com- 
pressed by dies of constant curvature O,,(x) = z = const. We assume that contact is estab- 
lished between the upper and lower surfaces of the layer and the dies. In view of the sym- 
metry of the problem with respect to x = 0, we seek its solution in the region 

g~ = {x, yl x ~ [0, l ] ,  y ~ [0, h]} .  

We require that the unknown functions take on the following values at the boundary of ~: 

where kx = const, k~ < 0, 

=~1==~ = , 1 , 1 = = ,  - -  ul==, - -  o v / o = l = _ - o  - -  o. 

Without breaking down the generality, we assume that "9 = 0.25 or, what is the same thing, 
~=~. 

The use of the above-described procedure of expansion in terms of Legendre polynomials 
reduces the problem to a boundary-value problem for a system, of linear differential equations 
with constant coefficients, 

do, tl----- O, 
2 4 

6u t , l l  - -  i |  T vo,t - -  5"~F ux = O, ( 6 . 1 )  

5 , i t .2  4 iSk, 
"-~ Vo,t t + " ~ -  ut,t  --9 ~ Vo = X a 

(the remaining unknown functions are uniquely expressed in terms of do, ux, and Vo), with 
five boundary conditions 

Ull+=o = Vo[,=o = 0,: 41~=z = o, 
2 

( 4 . ,  + L = o T --  kx. 
( 6 . 2 )  

Substituting the solution of (6.1), found with an exactness up to the undetermined coeffi- 
cients in (6.2), we have 

uh [ 8 . 
as I,,=h = I~-~" [ -  7 '~* 

[+ 
/ 2q~(x- - l )  2q+(x--l)/] ( 6 . 3 )  

8 ~q8 e h __ q4 e h . 
-~- 3(q3--q4 ) , ' 

2qn(x--l) 2q,{x--l)~] 
8 qae -f - - q , e  ~ "JJ, ( 6 . 4 )  

3 (q3 - -  q~) 

where k, = --(2/xh)k. 

The point x** The stresses a12 y=o and Oaly=h are represented graphically in Fig. _ 4. h 
in Fig. 4 corresponds to the maximal compressive stress at the surface y - and to a minimal 
stress at y = 0(l -- x**)/l = h/l-in (q3/q4)/(q3 -- q~), i.e., x** approaches Z with an in- 
crease in the ratio of the length Z to the thickness h. 

From the statement of the problem it is clear that the stresses O21y=o and aaly=h must 
be compressive over the whole surface, i.e., 
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L 

a2lu=o~<O, ~ ly=h~<O.  (6.5) 

If one of the conditions (6.5) breaks down at some part of the surface (there is a "depar- 
ture" of the corresponding part of the surface from the rigid die), the boundary conditions 
must be formulated in another form; that is, it must be assumed that the corresponding part 
of the surface is free of stresses. In this case, the condition that the elastic layer "does 
not enter the die" must be satisfied, i.e., 

~y=o ~ O~ vly= h <~ k~. (6.6) 

In [i], it is shown that the conditions (6.5) and (6.6) make it possible to obtain a unique 
�9 solution of the contact problem with an unknown contact zone. From (6.3) and (6.4) it can 
be seen that the condition (6.5) is satisfied for-kz ~ ~h/2. We note that for--kz < xh/2 
the condition (6.5) breaks down at the surface y = h and close to the end of the layer, which 
means that for--kz <xh/2 the ends of this surface depart from the die. We therefore formu- 
late the problem in the following manner. 

In the region fll = {x, ylx ~[0, x,], y ~[0, hi} let the unknown functions satisfy the 
Eqs. (1.4), (2.1), and (3.1) and at the surfaces y = 0, y = h, and x = 0 let them take on the 
values 

UII~=0 = VI [y=0 = I x,2 ly=o = 0, "~i2lt,--n = 0,  vItt,=h = kxh, 

~I l~o = OvI/Ox I~o = O, 

and in the region ~II = {x, ylx ~[x,, l], y ~ [0, h]} let them satisfy the same equations 
and the following relationships at the surfaces y = 0, y = h, and x = l: 

I I  = o i l  u - b = o  = UII ly=0 = Tt2 lY=0 I = TIIIy=h ly=h = O, 

In addition, the conditions of conjugation are satisfied at x = x,: 

U I  = U I I ,  1)I VII, (~] el i ,  TI2 II 

Applying the procedure of the expansion of the function in terms of Legendre polynomials 
we reduce the problem to a boundary-value problem for two systems of linear equations with 
constant coefficients of the fifth order each, 

d~,l = O, 
2 I 4 u~ = 0 ,  6u~,t i  - -  t l  ~ -  Vo,~ - -  5 - ~ -  

5 i --~-PO, ii -~ ~ 2 I 4 I t8kl .  
T - u M  - -  9 - ~  vo = x - - - y - ,  

(6.7)  
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a~I, = o, 

t 9 2  u~I, t i  - -  223 vo, t -1F - -  t 7 5  = 0, 

n 2 4 v~r xh 
t 7 5  v~Itt, + 223 u t , i  -6-  - -  432  -s = T '  

(6.8) 

with the five boundary conditions 

II 

u, + vo.t ~ z =  O, 4ui.1 - - - s  ~o ) ]~z= ~ T '  

and five conditions of conjugation at x = x,, 

a~ = a g  ~I = ~?, ,~ = ~ ,  

ai = a?,  ~ = ~ .  

The form of the system (6.7) is known, and the roots of the characteristic polynomial for 
the system (6.8) are equal to XI,2 = -+ (q,5 + iq,5), X3,4 = +- (q,s -- iq,6), q,a = /~'O, 
q,, = ~ ,  and q,~,4 = 2(19 _+ 2/~-75. The conditions (6.5) and (6.6) uniquely determine 
the unknown contact boundary x,. In the selection of I/h there is a certain arbitrariness; 
for example, it can be assumed that x,/h - ~ + 2~n. In this case, 

! - -  z ,  = q*6 (l  - -  k,)  
x ,  ~ (q*3 + q*4) k ,  

The stresses ~2[y=o and O2[y=h are shown in Fig. 5. As a result of the solution, the result 

II is obtained that the stress a2 [y=o is proportional to vIIIy=h and will be negative if the 

inequality (6.6) is satisfied. In the region ~I' 

0 2 ly=O --~ ~t-'5 -xh[ - -  --~- k a 8  -~1 | ~ a  - -  'taq~'3 " "~ 4 5 - -  ) ]  
:: ~ / . . . .  2 2q~,s(x--x,~) "~'3 q'42 C2e2"q"(5---"')h 

\ ~ ~,e + q,---7-- ' y=ll 

(q2. a+i) [ 4 k , ( 3 + q 2 a ) _ ( l _ k , ) ( 9 k , _ q 2 ~ ) ] ,  

2 
( ~ . ~ + 0  ~.  - 

c~ = 3 q , .  ( ~ -  ~L) t4k ,  (3 + qL)  - (I  - k , ) (gk ,  - q.~)]. 

In Fig. 5, x** is the point of the least and greatest compressive stress at the surfaces y = 
h and y = 0, respectively. From the equality 

~ ,  - z**)lz, = ~ , ) A  
(A is a constant expressed in terms of qs and q4), determining the point x**, it follows that 
x** approaches x, with a rise in the ratio x,/h and, consequently, of Z/h. The inequality 
(6.5) is satisfied for k,~O.14.= For k, = 0.14, the "zone of departure" (l -- x,)/l will he 
maximal and equal to =i/(i+2n).20%. 

The author expresses his thanks to G. V. Ivanov for stating the problem and for his 
continuing aid in the work. 
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